sexta-feira, 13 de fevereiro de 2026

Aula 22 - 25.2 - Instrumentação II. Corrente Elétrica e Campo Magnético. Professor Rafael, nesta sexta, 13/02

 Nas primeiras aulas da disciplina de Instrumentação em Ciência da Natureza e suas Tecnologias II vimos o campo elétrico, potencial elétrico e capacitores. Vejamos  agora um vídeo completo contendo também a lei de Ohm, associação de resistores e Campo magnético. 

Nesta aula de revisão, o estudante matriculado deve fazer um resumo sobre corrente elétrica, resistência elétrica e campo magnético e refazer os exercícios resolvidos pelo professor Rafael.

 Na aula anterior, na quarta-feira, 11/02, o professor Rafael Rodrigues(UFCG, campus Cuité) ministrou uma revisão  sobre eletrostática.


Vimos na aula 21 como calcular as componentes do vetor campo elétrico resultante da superposição de dois ou mais campos elétricos.
Veja mais.



Agora veremso a lei de Ohm e associação de resistores.

Veja mais






Este vídeo é parte do conteúdo programático da disciplina de Introdução a Física- Live 21, do regime acadêmico extraordinário(RAE) da UFCG, visto em 10-12-2020.


INSTRUMENTAÇÃO II - LISTA IV - CURSO DE LICENCIATURA EM FÍSICA
UFM-CES-UFCG 
Professor Rafael de Lima Rodrigues.                                   PERÍODO 2025.2. 
Aluno(a): _______________________________________________________

 CORRENTE E RESISTÊNCIA ELÉTRICA  

Parte A vale 3 pontos. 

Fazer um esquema da montagem do circuito, para verificarmos a lei de Ohm, utilizando um voltímetro acoplado em paralelo, para medir a ddp, em diferentes pontos, obtendo diferentes valores da tensão. 

A corrente elétrica é o fluxo de partículas com cargas elétricas q atravessando uma seção reta de área A, em um certo intervalo de tempo  Δt, ou seja,
I = q/Δt 
é medida no SI, em ampère(A), ou seja, 1A = 1C/1s(coulomb/segundo), cujo sentido é aquele  do movimento das partículas com cargas positivas. Para medirmos a corrente elétrica acoplamos no circuito um amperímetro em série.

Objetivo. 

Verificar como a resistência de um condutor varia em função do seu comprimento e do seu diâmetro. 

Materiais. 

Veja um multímetro funcionando como voltímetro, para um circuito de corrente contínua (DCV).
 Giramos o ponteiro indicador  para a direita, quando for medir a tensão elétrica em circuito com corrente alternada(ACV).

1 fonte de baixa tensão, 2 ou mais fios condutores homogêneos (de comprimentos e espessuras diferentes), 2 multímetros, 1 régua, cabos conectores. A diferença de potencial (ddp) nos extremos de um condutor fornece uma corrente elétrica que atravessa a área transversal A de um fio condutor de comprimento L, com uma resistência elétrica provocado pelos vários choques dos elétrons com os átomos da rede cristalina, cuja equação da resistência R torna-se: 

R = ρ L /A. 

A constante de resistividade ρ depende da temperatura e do material condutor. Esta equação da resistência é válida somente quando o campo elétrico for constante. Em alguns livros ela é denominada de segunda lei de Ohm. Dizer o que significa a Lei de Ohm. 


Montagem e procedimento 

Conecte um multímetro (amperímetro) em série e o outro (voltímetro) em paralelo com o circuito. Estique bem o fio, dispondo-o sobre uma superfície isolante, e divida-o em intervalos de comprimentos iguais, fazendo, por exemplo, traços sobre a superfície isolante que o contém. Deixe o conector 1 fixado numa extremidade de um fio. Ligue o conector 2 nas posições A, B, C etc. de modo a variar o comprimento do fio. Para um determinado fio, registre os valores de tensão(ddp) (U) e intensidade de corrente (I) para cada ponto. 

 Parte B. Questões. Justifique as respostas. 

B.1- Considere um bloco retangular com dimensões 1,2x1,2x15cm. a) Qual a resistência elétrica do bloco entre dois extremos quadrados? a) Qual a resistência elétrica entre as faces retangulares opostas? A resistividade do Ferro, na temperatura ambiente, 
ρ(Fe) = 9,68x10-3Ω m. 
 
B.2- A dissipação em calor de um resistor é de 30W(watts) e queda de potencial no mesmo é de 300V.(volts) Determine o valor da resistência e da intensidade da corrente (I) que o atravessa. Lembre-se que a potência elétrica, em termos da tensão elétrica, é dada por  

P = τ(A→B)/ t = q/t V(AB) = IV(AB)

O trabalho eletrostático para levar uma partícula com carga elétrica q de um ponto A ao ponto B sob uma  ddp V(AB) é dado por 
τ(A→B) = qV(AB). 

Portanto, P = IV(AB), isto é,  a potência elétrica em um circuito elétrico é o produto da corrente I vezes a tensão nos terminais A e B:  V(AB).  A unidade de potência no SI é W(watts).
B.3- Uma fonte de força eletromotriz de 16V e resistência elétrica de 2,0Ω forma um circuito elétrico simples com um resistor de resistência 30Ω. Neste caso, a potência elétrica dissipada internamente na fonte é, em watts de 
a) 0,25,                 b) 0,50,              c) 1,0,            d) 2,0. 

B.4- (ENEM 2002) Entre as inúmeras recomendações dadas para a economia de energia elétrica em uma residência, destacamos as seguintes: substitua lâmpadas incandescentes por fluorescentes compactas. ” Evite usar o chuveiro elétrico com a chave na posição ”inverno” ou ”quente”. ” Acumule uma quantidade de roupa para ser passada a ferro elétrico de uma só vez. ” Evite o uso de tomadas múltiplas para ligar vários aparelhos simultaneamente ”Utilize, na instalação elétrica, fios de diâmetros recomendados `as suas finalidades. A característica comum a todas essas recomendações é a proposta de economizar energia através da tentativa de, no dia a dia, reduzir 
a) A potência dos aparelhos e dispositivos elétricos, b) O tempo de utilização dos aparelhos e dispositivos, c) O consumo de energia elétrica convertida em energia térmica, d) O consumo de energia térmica convertida em energia elétrica, e) O consumo de energia elétrica através de corrente de fuga. Justifique sua resposta. 

B.5-Considere um circuito com 5 resistores de resistências elétricas todas iguais R(i), (i = 1, 2, 3, 4, 5) ligados em paralelos, sendo o primeiro resistor ligado a uma bateria com uma fonte de força eletromotriz ε, passando uma corrente I, na primeira malha. A quantidade calor desprendida nos resistores 4 e 5 é m vezes a quantidade desprendida no resistor 1, no mesmo intervalo de tempo. Determine o valor de m. Quando a corrente I chega no primeiro nó ela se divide em quatro, ou seja, I = I(2) + I(3) + I(4) + I(5). 

Sugestões: como os resistores em paralelos possuem a mesma ddp e como foi dado que as resistências são também as mesmas, então as potências dissipadas no resistor 1(com corrente I)  são dadas por: 
P(1) = Ri2
e nos resistores 4 e 5(com correntes iguais i) é 
P(4,5) = P(4) + P(5) = Ri2 + Ri2 = 2Ri2

B.6- Um gerador tem força eletromotriz (fem) ε = 1, 5V e resistência interna, r = 0, 10Ω. Ligam-se seus terminais por meio de uma resistência R = 0, 65Ω. Quanto vale a ddp-V(AB) entre os terminais? Lembre-se que: 

ε = (r + R)I,  V(AB) = ε − rI

B.7- Considere um circuito, composto por 12 fios ligados em paralelo, cada um com diâmetro d e comprimento L. Calcule a resistência equivalente dos 12 fios. Substituindo o circuito por um fio cilíndrico de mesmo comprimento L e resistência equivalente ao sistema composto, determine o diâmetro D deste novo fio.

Lembre-se que a resistência de cada fio é dada por  R = ρ L /A, neste caso, sendo a área A=𝞹d2/4.

Campo Magnético:  força magnética


Quando você afixa um ímã de enfeite na porta da sua geladeira, certamente sente nos dedos a atração exercida entre o ímã e a porta, concluindo que o espaço em torno do ímã tem propriedades especiais. O espaço próximo a uma barra de plástico carregado também apresenta propriedades especiais. Neste caso já aprendemos que um campo magnético   é gerado nas proximidades da barra. Por analogia, parece lógico postular que existe um campo magnético, o qual nós representamos pelo símbolo, $\vec B$ em todos os pontos nas vizinhanças do ímã.


Um tipo conhecido de ímã, é uma bobina enrolada em torno de um núcleo de ferro, o módulo do campo magnético externo é determinado pela corrente na bobina. Na indústria, tais eletroímãs são usados para separar objetos de ferro, num ferro-velho, cargas elétricas provocam o aparecimento de um campo elétrico e este, por sua vez, exerce uma força elétrica sobre qualquer outra partícula carregada contida no campo.

Força magnética

Força Magnética e o Campo Magnético de um fio com corrente.



Regra da mão direita

A palma da mão indica o sentido do vetor força magnética, o dedo polegar indica o sentido do vetor velocidade e os demais dedos da mão direita o sentido do campo magnético.


A interação do campo  magnético surge quando a partícula carregada está em movimento, 

  Fm qvxB,

Como vxé o produto vetorial, os vetores  B são perpendiculares ao vetor força magnética F.

Note que, |Fm| = q|vxB| = q|v| |B| sen(𝚹).

Portanto, quando o vetor velocidade for paralelo ao compo magnético, a força magnética é nula. Pois, sen(0)=0.

Vimos que uma partícula com carga elétrica em repouso a força elétrica é dada por 
Fe = q

Considere uma partícula carregada positivamente penetrando em um campo magnético uniforme, a sua trajetória será circular e a força magnética será perpendicular a velocidade e ao campo magnético.

 



Força Magnética e o Campo Magnético de um fio com corrente.


Neste caso,  para um fio de comprimento L e submetido a uma corrente i, a força magnética torna-se:

Fm= BiL
Pois, a velocidade 
v=L/t , 
fornecendo 

F=qvB=BqL/t=BLq/t=BiL⇔ F=BiL.

Cqd. (como queríamos demonstração).

O que significa uma corrente de um ampère?

Considere dois  fios no vácuo de comprimentos infinitos, paralelos com a distância de separação de um metro, tendo uma corrente de um ampère, produzindo uma força magnética entre eles de  2x10-7 N/m.

O campo magnético de uma bobina chata é dado por 

B = nμi /2πR, 

com n sendo o número de espiras e R o raio.

Segue também uma questão do ENEM 2018 sobre bateria de Lítio, com o link no final desta postagem.

 A unidade do campo magnético, no SI, é o T(Tesla).

Aplicação


Utilizando materiais de baixo custo pode ser verificado as interações magnéticas.


Considere um fio longo sendo percorrido por uma corrente elétrica i_1 ao lado de outro fio paralelo com uma corrente i_2 no mesmo sentido da corrente i_1. Verifica-se experimentalmente que a força magnética sobre o fio com corrente i_2 será de atração e de intensidade proporcional as correntes, ao comprimento do fio e inversamente a distância de separação D:

F=k(i_1i_2 L)/D

A unidade de medida de corrente elétrica ampère(A) é definida a partir desse força entre os dois fios.

Distinguir os geradores de corrente contínua e corrente alternada.

Demonstração.

O campo magnético sobre o fio com corrente 1_2, torna-se:


A força  magnética sobre o fio 2 resulta em:

Cqv


  

LEI DE AMPERE 


A Lei circuital de Ampère  fornece  o  campo magnético circular  devido a um fio condutor com corrente $i$ estacionária,  na forma integral é dada por

Usando o comando do Latex, 

$$
\int \vec B\cdot d\vec \ell=imu_0 i
$$

O  lado esquerdo pode ser escrito também por 

De acordo com a lei de Ampère para corrente estacionária de um condutor com uma corrente i, no ensino médio, é dada por 

ΣBΔLcosΘ = μi, com μ sendo a constante de permeabilidade magnética, o somatório é sobre o caminho fechado em torno do respectivo condutor e Θ é o ângulo entre os vetores L e B . Considerando um condutor retilíneo, ambos vetores são paralelos e o cosΘ = 1. 

Neste caso, a lei de Ampère torna-se ΣBΔL = B = μi /2πri ⇒ BΣΔL = μ0i.

 O somatório é somente sobre a circunferência de raio r, pois devido a simetria o campo magnético fica constante e, por sua vez, vale μi dividido pelo comprimento da circunferência, ou seja, o campo magnético em um ponto r distante do condutor retilíneo resulta em  

ΣΔL = 2πr ⇒  B = μi /2πr .

Portanto, de acordo com a lei de Ampère, obtemos:  

B = μ0i /2πr

Com,

μ0  é a constante de permeabilidade magnética no vácuo no SI, temos:

  μ=4πx 10-7Tm/A, 

m é metro, T é Tesla e A(ampére) é a unidade corrente elétrica no SI.

B é módulo do campo magnético de um fio com  corrente i. Unidade no SI: Tesla(T).

r é a distância ao fio. Usando as propriedades de potência, obtemos:


1m=100cm=102cm⇒1cm=(1/100)=10-2cm.

Exemplo: qual o campo magnético em um ponto P, distante de um fio condutor, no vácuo, de 2m e   percorrido com uma corrente elétrica de 30A?

Solução

Dados: i=30A, r=2m

μ=4πx 10-7Tm/A

 ⇒  B = μ0i /2πr= (4πx 10-7x 30)/(2πx2)=30x10-7=3x10-6

⇒  B = 3x10-6T.

O que significa uma corrente de um ampère?

Considere dois  fios no vácuo de comprimentos infinitos, paralelos com a distância de separação de um metro, tendo uma corrente de um ampère, produzindo uma força magnética entre eles de  2x10-7 N/m.

Observe  que as linhas de força do campo magnético em um ímã. Elas saem do polo Norte e entram no polo Sul.



Linhas de força magnética de um íimã, parte do polo Norte e chegam no polo Sul. A invetigação do campo magnético da Terra tem diversas aplicações: magnetização da Terra, na Navegação, comunicação, etc. 

Direção do campo magnético gerado por uma corrente i.

Visualização das linhas de força, usando limalhas de ferro. 

A revisão da lei de Faraday será visto na próxima aula. Veremos a construção de kits de circuitos com  eletroimã, motor elétrico e a explicação da Lei de Faraday no nível universitário e no nível do ensino médio.


Blog rafaelrag

Nenhum comentário:

Postar um comentário