Páginas

sexta-feira, 28 de abril de 2023

Aula 12-Prática de Ensino em Ciência e suas Tecnologias II- Simulações com Capacitores. UFCG-2022.2-Professor Rafael, nesta sexta, 28

 UAFM-CES-UFCG

rática de Ensino em Ciência e suas Tecnologias  II                      Período 2022.2

Professor Rafael Rodrigues     

SIMULAÇÕES COM CAPACITORES

Devido a dificuldade dos estudantes da disciplina de instrumentação conseguir os equipamentos eletrônicos estou enviando esse material da internet. Fazer um relatório individual.

Capacitância de um Capacitor



Fonte: https://brasilescola.uol.com.br/o-que-e/fisica/o-que-e-capacitor.htm.

O capacitor é um dispositivo eletrônico que serve para armazenar carga elétrica e energia. Ele é composto por duas armaduras condutoras separadas por um certo meio, sendo uma com carga +Q e a outra com -Q. 

Símbolo, representa qualquer capacitor, por exemplo, capacitor esférico ou de placas planas e paralelas: 

Você pode usar uma bateria de 12V para carregar as placas de um capacitor de placas planas e paralelas. No início, as placas estão descarregadas. Quando você conectar cada uma nos dois terminais positivo e negativo da bateria, iniciará o movimento dos elétrons

. A explicação estará no vídeo a seguir.  Quando a tensão(diferença de potencial elétrico-ddp) entre as armaduras do capacitor atingir 12V, a mesma tensão da fonte, cessará o movimento dos elétrons. A carga elétrica acumulada nas placas tem uma intensidade proporcional a ddp=U e a constante de proporcionalidade é exatamente a grandeza Física denominada de capacitância do capacitor, ou seja, 

C=Q/U.

Note que a carga Q é a intensidade da carga elétrica de cada armadura condutora. A carga total do capacitor é zero. Como a ddp(U) e a carga elétrica são grandezas físicas escalares, a capacitância C sendo a razão de ambas, logo, a  capacitância também é um escalar. 

Unidade de  capacitância no SI: F(farad). A ddp é V(volts) e a carga elétrica Q é C(coulomb).

No caso de capacitor esférico são duas esferas uma dentro  da outra. O capacitor cilíndrico são dois cilindros um dentro  do outro.

 

A capacitância de um capacitor de placas paralelas pode ser calculada por meio da seguinte equação:

C=ε A/d


No SI, temos:


C – Capacitância (F)
ε – constante de permissividade elétrica do meio (F/m)
A – Área das placas do capacitor (m²)
d – Distância entre as placas do capacitor (m)


Leia mais


 

ENERGIA ARMAZENADA EM CAPACITORES

 

Pode-se calcular a quantidade de energia potencial elétrica armazenada entre as armaduras de um capacitor usando a seguinte equação:

Epot=QU/2=CU²/2

 

tendo


EPOT – Energia potencial elétrica (J – joules)
Q – Carga elétrica (C – coulombs)
U – Tensão elétrica (ou diferença de potencial) (V – volts)

No mercado esse armazenador é utilizado para compor circuitos elétricos de diversos aparelhos, citando exemplos, tem-se em sensores, osciladores, máquinas fotográficas, computadores e televisores. O capacitor tem uma função primordial em circuitos retificadores cuja finalidade é obter correntes contínuas (DC), a partir de corrente alternada (AC) e, em circuitos ressonantes, como também em divisores de frequência.

Dada a sua alta gama de aplicações, existem diversos tipos de capacitores, sejam fabricados com materiais distintos ou até mesmo com formatos diferentes, como por exemplo, os esféricos, os cilíndricos, os planos etc. Mesmo com suas modificações externas a sua função continua a mesma, carregar cargas elétricas e depois descarregar em um momento específico.

Possuindo parâmetros que determina a sua capacitância (potencialidade), ou seja, determina a quantidade de carga que ele pode armazenar. Sobre a sua unidade de medição, é importante sobressaltar que é o Farad (F). Mas, a grande maioria dos capacitores possuem subunidades, essas por sua vez são, o microFarad (µF), nanoFarad (nF), ou o picoFarad (pF). Isso ocorre pois, 1 Farad (F) é uma capacitância grande, logo quanto maior a capacitância, maior é o capacitor, para isso existem informações sobre suas tensões máximas que ele pode suportar expostas no capacitor.

São duas as partes que compõem um capacitor:

1)  Duas placas (armaduras), que são carregadas com potenciais contrários de mesma intensidade, cuja função é conduzir a energia.

2)   Material isolante entre os condutores, chamado dielétrico, cuja função é armazenar a energia por meio do campo elétrico.

As duas placas são feitas de um material metálico, entretanto, o dielétrico por seu um meio isolante ele separa os condutores, eles por sua vez, podem ser de vidro, porcelana, cerâmica, plástico. Existem dielétricos que utilizam o ar e o vácuo para desempenhar a sua função.

 

PROCEDIMENTO EXPERIMENTAL

 

Complete as respostas das questões e faça o seu relatórios, tendo  objetivos, resultados e conclusão.

Para a realização desta prática será necessário o uso da simulação Capacitores, que pode ser acessada pelo link: https://laboratoriovirtual.fisica.ufc.br.

Nessa simulação é possível ajustar a área das placas do capacitor e a separação entre as placas. Também é possível escolher o dielétrico que preenche o capacitor dentre as 6 opções indicadas.

Vários dos dielétricos indicados apresentam valores da constante dielétrica variando dentro de uma certa faixa, assim, a simulação pode apresentar valores diferentes das constantes dielétricas (mas dentro da faixa) após cada inicialização.

O capacímetro da simulação apresenta um seletor que permite a escolha da escala apropriada para a medida da capacitância. Para a rotação do seletor clique no ponto situado na extremidade do mesmo e arraste para a escala desejada.

Na simulação da experimentação seguir os seguintes procedimentos:

ü  Fixar a distância entre as placas do capacitor em 1,0 mm, e considerar o ar como dielétrico;

ü  Ajuste a área das placas do capacitor e meça com o capacímetro o valor da capacitância para cada área e preencher os valores na Tabela 1;

ü  Anote também a escala do capacímetro utilizada na medida.

ü      Fixe a área das placas do capacitor em 15.000 .

ü  Considere o capacitor contendo o ar como dielétrico.

ü  Ajuste a separação entre as placas do capacitor e meça com o capacímetro o valor da capacitância, e note os valores na Tabela 2;

ü  Anote também a escala do capacímetro utilizada na medida.

Calcular o valor de 1/d.

 

 

RESULTADOS

 

                            Tabela 1: Dados experimentais da capacitância – [C=f(A)]

 

Área (mm2)

C (pF)

Escala

5.000

44.3

200pF

7.500

66.4

200pF

10.000

88.5

200pF

12.500

110.6

200pF

15.000

132.8

200pF

17.500

154.9

200pF

20.000

177.0

200pF

22.500

199.1

200pF

25.000

221

2000pF

 

                       Tabela 2: Capacitância em função da distância entre as placas

 

N

d(mm)

C (pF)

1/d (mm)

Escala

1

0,5

266

2.00

2000pF

2

0,6

221

1.67

2000pF

3

0,8

166

1.25

2000pF

4

1,0

132.8

1.00

200pF

5

2,0

66.4

0.50

200pF

6

3,0

44.3

0.33

200pF

7

4,0

33.2

0.25

200pF

8

5,0

26.6

0.20

200pF


RESULTADOS E DISCUSSÃO

 

1.  Fazer o gráfico da capacitância em função da área das placas do capacitor para os dados da Tabela 1. Discutir a forma da curva.


2.  Para os dados da Tabela 2, traçar o gráfico da capacitância em função de (1/d).

 

3.  Calcular o coeficiente angular do gráfico do item 2. O que se conclui?

 

4.  Determine a constante dielétrica da porcelana. Indique o procedimento.

permissividade relativa, também chamada de constante dielétrica, simbolizada por εr, é a permissividade de um material em relação à permissividade do vácuo. A permissividade relativa da porcelana é:

 

5.   Qual o valor da capacitância máxima que pode ser obtida na simulação dessa prática? Indique o dielétrico e os valores de área e separação entre as placas.

REFERÊNCIAS

 

“Aplicações dos Capacitores”. Disponível em: < https://www.resumoescolar.com.br/fisica/aplicacoes-dos-capacitores/. >. Acessado em: 15 de setembro de 2021.

HELERBROCK, Rafael. "O que é capacitor?"; Brasil Escola. Disponível em:< https://brasilescola.uol.com.br/o-que-e/fisica/o-que-e-capacitor.htm. > Acessado em: 15 de setembro de 2021.

Aulas Remotas do Professor Rafael de Lima Rodrigues

https://rafaelrag.blogspot.com/2021/03/capacotores-parte-da-live-da-aula-5-da.html

Blog rafaelrag

 

4 comentários: